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Abstract. We propose a systematic study of Bose-Einstein correlations between identical hadrons coming
from different W decays. Experimentally accessible signatures of these correlations as well as of possible
color reconnection effects are discussed on the basis of two-particle inclusive densities.

1 Introduction

One of the important problems in the study of the e+e−
annihilation at LEP2 energies is the understanding of pro-
duction and decay of W-boson pairs. Due to the fact that
hadrons originating from W decay overlap in space and
are created in time almost simultaneously, it is natural to
expect that there are correlations between hadrons origi-
nating from different W decays due to color reconnection
and Bose-Einstein (BE) interference. These effects may
affect the accuracy with which the W mass could be mea-
sured [1–3].

The DELPHI Collaboration has estimated both effects
[4,5]. At present level of statistics, no evidence for these
effects has been found. However, no systematic theoretical
treatment of the BE effect in W-pair production has been
given so far.

The problem of BE correlations cannot be separated
from the color reconnection effect. For the color reconnec-
tion phenomenon, theoretical model investigations have
recently been performed [6–9]. For example, it was pro-
posed in [6] to measure a difference between the mean
hadron multiplicity in four-jet final states (W+W− →
q̄1q̄2q3q4) and twice the hadronic multiplicity in two-jet
events (W+W− → q̄qlν̄l). Having clear advantages at the
present level of low statistics, this method, however, can-
not be sensitive to all possible correlations which may exist
due to cross-talk between hadrons and may be experimen-
tally accessible in the near future.

In this paper we present a systematic study of both ef-
fects leading to a stochastic dependence between hadrons
coming from different W decays. Our study is mainly lim-
ited to a discussion of two-particle inclusive densities but
can easily be generalized to higher-order correlations.
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2 Independent W-pair decay

2.1 Many-particle inclusive description

In this subsection we shall give a very general formalism of
independent WW decay using generating functionals for
many-particle inclusive densities (see [10] for a review).

A distribution of final-state particles produced in four-
jet WW decay in a phase-space domain Ω is fully deter-
mined by the generating functional

Rww[u(p)] = 1 +
∞∑

n=1

1
n!

∫
Ω

ρww(p1, p2, . . . , pn)

×u(p1) . . . u(pn)
n∏

i=1

dpi, (1)

where ρww(p1, p2, . . . , pn) is the n-particle inclusive distri-
bution with pi being the 4-momentum of ith particle. The
inclusive densities can be recovered from the functional
differentiation of (1)

ρww(p1, p2, . . . , pn)
= ∂nRww[u(p)]/∂u(p1) . . . ∂u(pn) |u=0 . (2)

Since high-order inclusive densities contain redundant in-
formation from lower-order densities, it is advantageous
to consider the n-particle (factorial) cumulant correlation
functions Cww(p1, p2, . . . , pn) which are obtained from
the generating functional

Gww[u(p)] = lnRww[u(p)], (3)

so that

Cww(p1, p2, . . . , pn)
= ∂nGww[u(p)]/∂u(p1) . . . ∂u(pn) |u=0 . (4)
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Analogously, one can define the generating functionals
for the final-state hadrons in two-jet WW decay,

Rw[u(p)] = 1 +
∞∑

n=1

1
n!

∫
Ω

ρw(p1, p2, . . . , pn)

×u(p1) . . . u(pn)
n∏

i=1

dpi , (5)

Gw[u(p)] = lnRw[u(p)] (6)

with ρw(p1, p2, . . . , pn) being the n-particle inclusive den-
sity for two-jet WW decay.

Let us consider an uncorrelated WW decay scenario.
In this we assume that each W boson showers and frag-
ments into final-state hadrons without any reference to
what is happening to the other. In this case Rww[u(p)] is
the product of the generating functionals for the two-jet
WW decay of differently charged W’s

Rww[u(p)] = Rw+
[u(p)] Rw−

[u(p)]. (7)

In terms of the generating functionals for the correlation
functions, this can be represented as follows

Gww[u(p)] = Gw+
[u(p)] + Gw−

[u(p)]. (8)

We explore the relation (7) only for the two-particle inclu-
sive density. Being a simple characteristic beyond single-
particle inclusive spectra, it is this quantity that is very
often used in the correlation analysis, especially in con-
nection with the BE interference.

2.2 Two-particle inclusive density

Let us first define the two-particle inclusive density ρ(1, 2)
for particles 1 and 2 in the variable Q12 =

√−(p1 − p2)2
as

ρ(1, 2) =
1

Nev

dnpairs

dQ12
,

∫
Q

ρ(1, 2)dQ12 = 〈n1(n2 − δ12)〉 . (9)

Here, Nev is the number of events (in a theoretical limit
Nev → ∞), npairs is the number of particle pairs, n1 is the
number of particles of type 1 in the event, n2 that of type
2. For different hadrons (or identical hadrons coming from
different events) δ12 = 0 and δ12 = 1 for identical hadrons
coming from the same event. Since there are two possible
combinations for identical hadrons, positive-positive and
negative-negative, we combine both samples into a single
one with a factor 1/2. Hereafter, we shall refer to this
as the like-charged particle sample and will symbolize it
as (±,±). For unlike-charged particle combinations, we
adopt the notation (+,−). The integration is performed
in (9) over the full range of Q of the variable Q12, so that

〈n1(n2 − 1)〉 ≡ F2, (10)

where F2 is the second-order (unnormalized) factorial mo-
ment for full phase space.

The single-particle and two-particle inclusive densities
in Q12 variable for the four-jet WW hadronic decay can
directly be obtained performing two successive functional
differentiations of (7) over the probing function u(p),

ρww(1) = ρw+
(1) + ρw−

(1) , (11)

ρww(1, 2) = ρw+
(1, 2) + ρw−

(1, 2)

+2ρw+
(1)ρw−

(2). (12)

Note that the latter expression differs from the sum of
two-particle densities for each independent source taken
separately.

Performing the same functional differentiations of (8),
one can find the two-particle correlation function in the
four-jet WW decay,

Cww(1, 2) = Cw+
(1, 2) + Cw−

(1, 2), (13)

This illustrates the fact that, in contrast to the two-particle
densities, the correlation functions are additive and do not
contain the contribution from lower-order inclusive densi-
ties.

Experimentally, it is advantageous to rewrite (12):

ρww(1, 2) = ρw+
(1, 2) + ρw−

(1, 2) + 2ρw+w−
mix (1, 2), (14)

where we replaced ρw+
(1)ρw−

(2) with the track mixing
two-particle density ρw+w−

mix (1, 2) obtained by pairing par-
ticles from different two-jet WW events, to insure that
particles coming from differently charged W’s do not cor-
relate. This technique leads to factorization of ρw+w−

mix (1, 2)
into the product of the single-particle densities.

Let us consider different charged-particle combinations.
Following (14), one can define

∆ρ(±,±) ≡ ρww(±,±) − 2 ρw(±,±)

−2ρw+w−
mix (±,±) , (15)

∆ρ(+,−) ≡ ρww(+,−) − 2 ρw(+,−)

−2ρw+w−
mix (+,−) , (16)

where we assume that

ρw(+,−) ≡ ρw+
(+,−) = ρw−

(+,−) , (17)

ρw(±,±) ≡ ρw+
(±,±) = ρw−

(±,±) . (18)

Expressions (15) and (16) are evidently equal to zero for
uncorrelated four-jet WW decay.

One can integrate (11) and (12) over the Q interval to
obtain the relations for average multiplicity and second-
order factorial moment in uncorrelated four-jet WW de-
cays:

∆ ≡ 〈nww〉 − 〈nw+〉 − 〈nw−〉 = 0 , (19)

∆F2 ≡ Fww
2 − Fw+

2 − Fw−
2 − 2 〈nw+〉 〈nw−〉 = 0 . (20)
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The latter equation can also be directly obtained from the
assumption on uncorrelated WW decay. Indeed, taking
into account (10), (20) can be rewritten as

〈
n2
ww

〉 − 〈nww〉 − 〈
n2
w+

〉
+ 〈nw+〉 − 〈

n2
w−

〉
+ 〈nw−〉

−2 〈nw+〉 〈nw−〉 = 0 . (21)

Assuming that for each WW event nww = nw+ + nw−

and, for uncorrelated WW decay, 〈nw+nw−〉 = 〈nw+〉
〈nw−〉, one can see that the left-hand side of this equation
is indeed zero. Note that in this particular case all

〈
n2
w

〉
terms cancel, i.e., (21) holds for any full-phase-space mul-
tiplicity distribution.

By construction,

∆F2 =
∫

Q

∆ρ(1, 2), (22)

omitting the charge dependence for simplicity.
A deviation of ∆ρ(±,±), ∆ρ(+,−) or ∆F2 from zero

is possible only in the case of correlated WW decay. It is
very important to note, however, that the opposite is not
true: ∆ρ(±,±) = ∆ρ(+,−) = 0 is a necessary, but not
a sufficient condition for uncorrelated WW decay. This is
further illustrated in the appendix using generating func-
tions.

2.3 Reduced BE correlations
in independent WW decay

A commonly acceptable method to study the BE effect
is based on the calculation of the following correlation
function:

R(1, 2) =
ρ(1, 2)

ρ(1)ρ(2)
= 1 +

C(1, 2)
ρ(1)ρ(2)

. (23)

In this it is assumed that the two-particle density ρ(1, 2)
for identical (like-charged) boson combinations contains
no additional correlations except those connected with the
BE interference.

Experimentally, the reference sample ρ(1)ρ(2) is usu-
ally constructed by using the track mixing method of pair-
ing identical particles from different events. To make it
possible to estimate the BE effect in the case when some
extra correlations are present in ρ(1, 2), R should be fur-
ther divided by the same function but calculated from
Monte Carlo (MC) models without the BE effect. This
technique is based on the assumption that different types
of correlations can be factorized and Monte Carlo models
are able to describe all other possible correlations cor-
rectly.

Another way to estimate R is to use the reference sam-
ple composed of unlike-charged particles from the same
event. This method is affected by the presence of dynam-
ical correlations due to the decay products of resonances.

A first attempt to describe the BE correlations in four-
jet WW decay would be to understand the behavior of
C(1, 2) when there is no stochastic dependence between W

pairs. This can be done if one remembers that the overall
topology of W+W− → q̄qlν̄l events is quite similar to
that of Z boson decay at LEP1 energies. Therefore, one
can assume that the correlation function CW(1, 2) in the
two-jet WW events is the same as the correlation function
CZ(1, 2) in Z boson decay. From (23) one can write

ρw(1, 2) = ρw(1)ρw(2) + CZ(1, 2). (24)

Substituting this into (12) assuming ρww(1) = 2 ρw(1)
for full overlap in Q12, one has

ρww(1, 2) = ρww(1)ρww(2) + 2 CZ(1, 2) (25)

and

Rww(1, 2) = 1 +
1
2

CZ(1, 2)
ρw(1)ρw(2)

. (26)

From this follows the fact that, in the absence of WW
correlations, the strength of the BE correlations in four-
jet WW events is only half of the strength in Z boson or
in two-jet W decay! In practice, the overlap will not be
complete, even in the particular projection variable used,
and the suppression will be less severe in actual Monte
Carlo simulation below, but the point is that not the same,
but a reduced BE effect has to be expected for WW events
even in the absence of inter-W correlations. Note that the
possibility of a decrease of the BE effect in the case of
independent four-jet WW decay has already been pointed
out in [8], but without quantitative estimates of this effect.

Of course, the latter conclusion is correct only in the
case of no correlations between hadrons coming from dif-
ferent W bosons. We shall discuss the degree of validity of
this assumption in the next subsection.

2.4 Monte Carlo study

To check the validity of ∆ρ(±,±) = ∆ρ(+,−) = 0 in (15)
and (16), we use the PYTHIA 6.1 Monte Carlo model [11]
with the L3 default parameters [12] for LUND hadroniza-
tion without BE correlations1. A cut on charged-particle
multiplicity Nch > 2 is used. The total number of events
is 4000 for four-jet and 8000 for two-jet WW decays gen-
erated at c.m. energy of 190 GeV. Since the hadronic mul-
tiplicity of two-jet events is affected by τ decays, hadrons
from τ decays are excluded. For the given statistics and
tuning, the average charged-particle multiplicity is 〈nw〉 =
16.90 ± 0.05 for two-jet (W+W− → q̄qlν̄l) and 〈nww〉 =
33.6 ± 0.1 for four-jet W+W− → q̄1q̄2q3q4 decay. This is
smaller than for the original JETSET default since long-
lived resonances (such as K0, Λ) are declared to be sta-
ble. From the mean multiplicities, one obtains the ratio
〈nww〉 /2 〈nw〉 = 0.994 ± 0.004.

To obtain ρw+w−
mix in the track-mixing method, we gen-

erate the particle multiplicity Np according to the Poisson

1 We use the L3 default since in this paper we study the
model with the two sets of parameters - with and without the
BE simulation. Both models have been tuned to reproduce the
same global-shape variables and single-particle densities at Z
peak energy
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Fig. 1. Two-particle inclusive densities for four-jet and two-jet
WW decays generated with PYTHIA MC without BE corre-
lations

0

1

2

3

4

ρ m
ix
 /0

.1
G

eV

(± ±)
(+ −)

0.96

0.98

1

1.02

1.04

0 0.5 1 1.5 2 2.5 3 3.5 4

Q12, GeV

ra
tio

PYTHIA 6.1

W
+

W
-

Fig. 2. Two-particle densities obtained with the track mix-
ing method. Since it is difficult to distinguish between dif-
ferent charged combinations, the figure also shows the ratio
ρw+w−
mix (±, ±)/ρw+w−

mix (+, −)

distribution with the mean obtained from two-jet WW
events. Then, we generate events using Np tracks from
two-jet WW events imposing the constraint that each
track should originate from a different event. We require
the total charge of the generated event to be zero, and
that the two particles of the pair originate from differently
charged W’s. In addition, for a given generated event with
the multiplicity Np, only tracks from an original event of
multiplicity Np − 4 ≤ N ≤ Np + 4 are used. The analysis
is based on 250k track-mixed events.

Figures 1 and 2 show the behavior of the three terms
in (15) and (16). Since the results for ρw+w−

(±,±) and
ρw+w−
mix (+,−) are nearly on top of each other, Fig. 2 also

shows the ratio ρw+w−
mix (±,±)/ρw+w−

mix (+,−). Finally,
Fig. 3 shows ∆ρ(±,±) and ∆ρ(+,−). As seen the assump-
tion of independent hadronic W decay does not hold, even
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Fig. 3. ∆ρ obtained with PYTHIA MC without BE correla-
tions

when color reconnection and BE effects are not included
in the MC code. The degree of such non-independence can
be estimated by integrating the left hand-side of (15) and
(16) over full phase space to obtain ∆F2 (20):

∫
Q

∆ρ(±,±) '
∫

Q

∆ρ(+,−) ' −4.3 ± 0.3. (27)

Note that to simplify our study, we evaluated statisti-
cal errors assuming that there are no correlations between
points at different Q12 values. This is a strong assump-
tion, especially for the Q12 ∼ 0.5 region where the con-
tribution of resonances is largest and phase-space points
are strongly correlated. In addition, we did not take into
account that the average multiplicity 〈nw〉 has its error,
which should be taken into account when generating the
particle multiplicity Np for ρw+w−

mix according to the Pois-
son distribution. Therefore, the values of errors shown in
the figures are lower limits.

Statistical errors for ρw+w−
mix are rather small. Indeed,

statistics available for the calculations of ρw is determined
by the number of pairs. This is proportional to 〈n〉2w Nev,
where Nev is the number of two-jet events. However, if we
do not take into account the cut Np − 4 ≤ N ≤ Np + 4,
ρw+w−
mix is roughly determined by 〈n〉2w N2

ev since tracks
are taken from different events.

To check the correctness of the method, we simulated
pseudo-W events using hadron production at the Z peak.
The average multiplicity of these events is rather similar to
that of two-jet WW decay. We combined two independent
Z boson events generated with PYTHIA 6.1. Then, we
considered this hypothetical event to be a “four-jet WW
event”. A single Z boson decay is considered to be a “two-
jet WW event”. Since Z boson decay products are taken
from different events, they a-priori do not correlate and
(15) and (16) have to be zero. Using the same program as
that for the original WW sample, we repeated the previous
calculations. The results are given in Fig. 4a.

To see whether there is any effect from the fact that
the two W’s in a four-jet event carry opposite charge, we
repeated the above analysis combining two two-jet events
with different W charge into a single “four-jet event”. The
result is given in Fig. 4b.

In both figures, Fig. 4a and 4b, there is a small sys-
tematic deviation from the zero line. This can be due to
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Fig. 4. ∆ρ obtained with PYTHIA MC without BE correla-
tions, combining a two different Z boson events into one single
four-jet event, b two two-jet events of opposite W charge into
a single four-jet event

residual correlations which are not completely removed
in the track-mixing sample. However, taking into account
that statistical errors are underestimated, such a deviation
is rather small and will be neglected.

3 Correlated WW production

3.1 General features

From the MC study in the previous section it follows that
the standard assumption of independent WW decay is a
rather naive simplification when we are dealing with the
two-particle inclusive densities. One can consider a few
possible reasons leading to non-independent WW decay:

1) Energy-momentum conservation. Consider the pro-
duction of two W’s in the c.m. frame. The mass of each W
boson is distributed according to the Breit-Wigner shape,
i.e. for each event the two masses are unequal and differ
from the nominal W mass (which is 80.25 GeV for the L3
default in PYTHIA). From this it can be seen that there
is a competition between the Breit-Wigner mass distribu-
tion and overall momentum rescaling to conserve the total
energy Ecm and to allow for enough phase space.

2) Apart from the Breit-Wigner distribution, the over-
all topology of WW events is generated according to the
matrix element approach with the nominal W mass. This
calculation includes Coulomb interaction between differ-
ent W’s [11]. Theoretical calculations of the Coulomb ef-
fects on the WW production can be found in [13].

3) Since spin information is included into the matrix
elements, there are angular correlations.

While the contribution from the two last effects is not
well understood yet and, presumably, is small, the first
effect is most important since it may produce negative
correlations: The overall shape of the multiplicity distri-
bution in the four-jet WW decay is slightly narrower than

that expected from naive superposition of two indepen-
dent two-jet WW decays.

From the MC study, one can estimate the degree of
(linear) stochastic dependence between two W masses. For
this one can calculate the correlation coefficient,

r(m+, m−) =
[
σ2(m+)σ2(m−)

]−1/2

× (〈m+m−〉 − 〈m+〉 〈m−〉) , (28)
−1 ≤ r(m+, m−) ≤ 1 , (29)

where σ2(m±) is the variance and 〈. . .〉 stands for the av-
erage over all events. If there is no correlation between the
two W masses m+ and m−, then r(m+, m−) = 0. Our MC
estimate gives r(m+, m−) ' −0.04 ± 0.02, i.e., there is a
small negative correlation between masses. Since the mul-
tiplicity of particles is determined by m+ and m−, this
means that a large hadron multiplicity from one W bo-
son slightly suppresses the multiplicity of hadrons coming
from the other W.

The effects discussed above are not the only phenom-
ena which can lead to non-zero values of (15) and (16).
At hadronization scale distances, the space separation be-
tween the two W decay vertices is rather small (∼ 0.1
fm) and the hadronization regions of the two W bosons
overlap. For this system, soft partons originating from dif-
ferent W bosons are close-by in space and could form
color-singlet clusters from which the observable final-state
hadrons emerge [14]. Therefore, the origin of these hadrons
is difficult to determine. Such an effect, usually called color
reconnection, could lead to an additional non-indepen-
dency of W decay products. In terms of the LUND model,
the reconnection occurs when strings overlap like for a
type I superconductor or when they cross like for a type
II superconductor [8].

After the transformation of partons into hadrons, the
BE correlations can give an additional contribution to the
overall correlations, since the space-time separation be-
tween hadrons is still smaller than the typical source radii
(∼ 0.5 − 1.0 fm) of the BE correlations.

In the case of the interference effects, one can assume

∆ρ(±,±) = ∆ρec(±,±) + ∆ρbe(±,±)
+∆ρcr(±,±) , (30)

∆ρ(+,−) = ∆ρec(+,−) + ∆ρcr(+,−) , (31)

where ∆ρec is the contribution from energy conservation
and other non-interference effects, ∆ρbe represents the BE
correlations and ∆ρcr-color-reconnection correlations.

One can directly investigate the interference effects by
calculating the difference:

δρ = ∆ρ(±,±) − ∆ρ(+,−). (32)

Since the track mixing terms are very similar, one has

δρ ' ρww(±,±) − 2 ρw(±,±)
−ρww(+,−) + 2 ρw(+,−), (33)

which no longer involves the track mixing terms since they
cancel. Taking into account the fact that ∆ρec(±,±) and
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∆ρec(+,−) are the same (see MC studies above), from
(30) and (31) one can see that δρ resolves only the inter-
ference terms

δρ ' ∆ρbe(±,±) + ∆ρcr(±,±) − ∆ρcr(+,−). (34)

If the color-reconnection effects are charge-independent,
δρ is fully determined by the BE correlations, δρ ' ∆ρbe
(±,±).

3.2 BE correlations

The study of BE interference in the form of an enhance-
ment of the two-particle correlation function by comparing
fully hadronic and double semi-leptonic events has been
proposed in [1]. Following this method, the DELPHI Col-
laboration measured the following correlation function [4]:

R∗ =
ρww(±,±) − 2 ρw(±,±)
ρww(+,−) − 2 ρw(+,−)

. (35)

Because of (15) and (16), this expression is equal to

R∗ =
2ρw+w−

mix (±,±) + ∆ρ(±,±)
2ρw+w−

mix (+,−) + ∆ρ(+,−)
. (36)

Note that (36) has very little to do with the standard
definition of the BE correlation function (23).

This can be seen if one assumes that ∆ρ(+,−) = 0
and ρw+w−

mix (±,±) ' ρw+w−
mix (+,−),

R∗ ∼ 1 +
∆ρ(±,±)

2ρw+w−
mix (±,±)

. (37)

Formally, the structure of (37) is similar to (23). How-
ever, since ∆ρ(±,±) is different from C(1, 2) for identical
pions originating from different W bosons, R∗ is not the
BE correlation function. For example, one can see that
R∗ is always peaked at Q12 → 0 for any slow change in
∆ρ(±,±), since ρw−w+

mix (±,±) is a decreasing function for
Q12 → 0. In fact, ∆ρ(±,±) is non-dynamically distorted
by this division. Such a distortion by the single-particle
density in (35)-(37) is properly removed in the definition
(33) to study the interference effects.

3.3 Monte Carlo studies

To see how the BE correlations affect δρ and R∗, we use
the PYTHIA 6.1 Monte Carlo with the BE effect included
for all identical pions. The BE correlations are simulated
with the LUBOEI model. After the model retuning, the
average charged-particle multiplicity is 〈nw〉 = 16.72 ±
0.05 for two-jet and 〈nww〉 = 33.5 ± 0.1 for four-jet WW
decay. The ratio is 〈nww〉 /2 〈nw〉 = 0.997 ± 0.004.

Figures 5, 6, 7 show the terms of (15) and (16) for the
case of the BE correlations, as they are implemented into
the Monte Carlo code. The most obvious difference is the
(expected) effect of the BE correlations on ∆ρ(±,±) at
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Fig. 5. Two-particle inclusive densities for fully hadronic and
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small Q12 in Fig. 7 (c.f. Fig. 3). However, also ∆ρ(+,−)
is affected and non-zero in LUBOEI. The approximation
(37), therefore, is not valid and (36) cannot measure the
standard BE correlation function. Integrating the left
hand-side of (15) and (16) over full phase space, one has
(c.f. (27))

∫
Q

∆ρ(±,±) ' 1.54 ± 0.04 ,

∫
Q

∆ρ(+,−) ' 1.43 ± 0.04 . (38)

Figures 8 and 9 show the behavior of R∗ and δρ. The
BE effect appears stronger in R∗ than in δρ. In addition,
statistical errors in Fig. 8 are much smaller. However, as
we have noted already, this is mainly because of the form
of ρww

mix (±,±) at small Q12. This leads to a behavior of
R∗ appearing similar to that of BE correlations, even if
∆ρ(±,±) is a small Q12-independent constant.

The inconsistency in the BE correlation study by
means of R∗ can be seen in Fig. 8. In the parameteriza-
tion of the BE correlations, the L3 default is a spherical
Gaussian source R(Q12) ∼ 1 + λ exp(−r2Q2

12) with the
correlation strength parameter λ = 1.5 and radius r = 0.6
for all 9 particle species. This means that the BE from

different W bosons should have a similar form. However,
Fig. 8 shows that the shape is far from Gaussian.

The structure of the BE correlations between hadrons
originating from different W bosons can be observed from
the study of δρ, despite its evidently small signal. One can
see from Fig. 7 that LUBOEI changes the unlike-particle
spectrum as well: Since LUBOEI spoils the overall energy-
momentum conservation when it shifts identical particles
to reproduce the expected two-particle correlation func-
tion, momenta of non-identical particles are modified. As-
suming that there is no color reconnection, expressions
(30), (31) and (34) are modified for LUBOEI as

∆ρ(±,±) = ∆ρec(±,±) + ∆ρbe
LUB(±,±) , (39)

∆ρ(+,−) = ∆ρec(+,−) + ∆ρbe
LUB(+,−) , (40)

δρ = ∆ρ(±,±) − ∆ρ(+,−) = ∆ρbe
LUB(±,±)

−∆ρbe
LUB(+,−) , (41)

where ∆ρbe
LUB(±,±) and ∆ρbe

LUB(+,−) are the terms due
to the BE interference simulated with LUBOEI. As can
be seen, δρ resolves the comparatively large difference be-
tween ∆ρbe

LUB(±,±) and ∆ρbe
LUB(+,−), rather than the

distortion for like-charged particles alone. The effect de-
pends on the amount of change in the unlike-charged par-
ticle spectra and other implementations of the BE interfer-
ence may show a different effect for δρ than that observed
from the LUBOEI model. (In the limit that the BE inter-
ference would not change the unlike-charged spectra, the
signal would be as much as two to three times stronger for
δρ than that observed from the LUBOEI model.) It would
be interesting to apply other BE simulations based, for ex-
ample, on local [15] and global [16] re-weighting methods
or on the LUND string model [17,18].

Note that the color reconnection effect cannot be de-
tected using (32) if it is charge independent, unlike to
the BE correlations. However, the color reconnection can
be detected from unlike-charged particle combinations, af-
ter properly removing the correlations from energy-conser-
vation.

4 Conclusion

One of the main reasons to study the BE and color recon-
nection effects is the possibility to determine the precision
with which the W mass can be measured at LEP2 energies.
Moreover, such investigations provide an opportunity for
probing the structure of the QCD vacuum and the details
of hadronization.

In this paper we discuss model-independent signatures
of the BE and color reconnection effects beyond single-
particle spectra. The problem of the two-particle correla-
tions in the WW system, however, is not as simple as it
looks at a first glance: for WW events without color recon-
nection or BE correlations, there are energy-momentum
and other correlations which can distort the observed two-
particle densities. These correlations should be properly
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taken into account before estimating the interference ef-
fects. We propose to calculate the difference δρ, in which
contributions from energy-conservation cancel. This dif-
fers from the method used by DELPHI. Formally, the lat-
ter resembles the traditional way of the BE correlation
study, but any quantitative interpretation of strength and
radius parameters and comparison to values obtained from
previous BE analysis is misleading. The method proposed
here is expected to be less sensitive to the distortion from
other dynamical correlations between W’s.

As a final remark, we note that even if the energy-
conservation effects are properly removed as in (32), the
absence of a signal is not a sufficient condition for the ab-
sence of interference at the hadronization scale. The cor-
relations between hadrons originating from different W’s
may well exhibit themselves in higher-order inclusive dis-
tributions.
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Appendix

Recently it was suggested [6] that the color reconnection
effect can lead a smaller mean hadronic multiplicity 〈nww〉
in fully hadronic decay than twice the hadronic multiplic-
ity 〈nw〉 in semi-leptonic decay, i.e. ∆ in (19) is negative.
At the present level of statistics at LEP2, no such an ef-
fect has been found [5,19]. A Monte Carlo simulation of
BE correlations based on the Lund Fragmentation Model
gives no support to the possible experimental signal in-
volving single-particle spectra as well [18,20].

Statistically, of course, (19) is not a condition for
stochastic dependence between two systems. Purely in-
dependent production of W bosons has to lead to the fac-
torization of the generating functionals as in (7). This can
be illustrated by replacing auxiliary function u(p) by a
constant z. Then the generating functional is reduced to
the generating function Gww(z) =

∑
(1 + z)nPn for the

probabilities Pn of detecting n hadrons in fully hadronic
four-jet WW decays

Gww(z) = Gw+
(z) Gw−

(z) , (42)

Fww
q =

∂qGww(z)
∂zq

|z=0 , (43)

where Gw(z) is the generating function for final-state par-
ticles in the two-jet WW decays and Fww

q is the factorial
moment.

If there is a stochastic dependence between W’s, (42)
has to be modified. However, rigorous information about
the interdependence is necessary to make any definite state-
ment about the exact form of Gww(z). This information is
not available because of many unknown factors. One may
assume that Gww(z) can still be represented by Gw+

(z)

and Gw−
(z) if the distortions caused by such a depen-

dence are not very strong. Then,

Gww(z) = Gw+
(z)Gw−

(z) + g(z), (44)

where g(z) is a function representing possible stochastic
dependence between decay products of different W’s. To
preserve the total normalization Gww(z = −1) = 1, one
should put g(z = −1) = 0, so that g(z) is not a generat-
ing function in the “usual” probabilistic sense. In addition,
one must require g

′
(z) |z=0= 0 and that the form of g(z)

cannot lead to Pn < 0. Such a method was used in [21]
to introduce a stochastic dependence between Bernoulli
sources in order to modify a positive-binomial distribu-
tion.

It is easy to see that g(z) contains integrated properties
of interference and other effects leading to the dependence
of different W’s. For the average multiplicity 〈nww〉 =
Fww

1 in four-jet WW decay, one has from (44)

〈nww〉 = 〈nw+〉 + 〈nw−〉 (45)

since g
′
(z) |z=0= ∆ = 0.

For the second-order factorial moment, one obtains

Fww
2 = Fw+

2 +Fw−
2 +2 〈nw+〉 〈nw−〉+g

′′
(z) |z=0 . (46)

By comparing this expression with (20), one can see that

∆F2 = g
′′
(z) |z=0 . (47)

If it happens that g
′′
(z) |z=0= 0, then we shall not be

able to detect the BE correlations and color reconnection.
If this is so, higher-order factorial moments (or inclusive
densities) would have to be checked before one is able to
exclude interference effects.
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